Making genome expression data meaningful: Prediction and discovery of classes of cancer through a connectionist learning approach

نویسنده

  • Francisco Azuaje
چکیده

With more than 30 years of experimental research, there have been no generic models to classify tumours and identify new types of cancer. Similarly, advances in molecular classification of tumours may play a central role in cancer treatment. Here a new approach to genome expression pattern interpretation is described and applied to the recognition of B-cell malignancies as a test set. Using DNA microarrays data generated by a previous study, a neural network model known as Simplified Fuzzy ARTMAP is able to identify normal and diffuse large Bcell lymphoma (DLBCL) patients. Furthermore, it discovers the distinction between patients with molecularly distinct forms of DLBCL without previous knowledge of

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Iranian EFL Learners’ Learning Approaches Through Their Teachers’ Narrative Intelligence and Teaching Styles: A Structural Equation Modelling Analysis

It goes without saying that there are many influential factors affecting the success of any learning experience, and teachers are definitely among the significant factors influencing the process of teaching and learning. In this respect, the present study sought to investigate the prediction of Iranian English as a Foreign Language (EFL) learners' learning approaches through their teachers’ nar...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Evolving Connectionist Systems Evolving Connectionist and Fuzzy-Connectionist Systems for On-line Adaptive Decision Making and Control

The paper contains a discussion material and preliminary experimental results on a new approach to building on-line, adaptive decision making and control systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, on-line learning. They can accommodate any new input data, including new features, new classes, etc. New connections and new neurons are c...

متن کامل

Chapter 7. Evolving Connectionist and Fuzzy - Connectionist Systems: Theory and Applications for Adaptive, On-line Intelligent Systems

The paper introduces one paradigm of neuro-fuzzy techniques and an approach to building on-line, adaptive intelligent systems. This approach is called evolving connectionist systems (ECOS). ECOS evolve through incremental, online learning, both supervised and unsupervised. They can accommodate new input data, including new features, new classes, etc. New connections and new neurons are created ...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000